7 research outputs found

    Semantic Relevance

    Get PDF
    International audienceAbstract A clause C is syntactically relevant in some clause set N , if it occurs in every refutation of N . A clause C is syntactically semi-relevant, if it occurs in some refutation of N . While syntactic relevance coincides with satisfiability (if C is syntactically relevant then N∖{C}N\setminus \{C\} N \ { C } is satisfiable), the semantic counterpart for syntactic semi-relevance was not known so far. Using the new notion of a conflict literal we show that for independent clause sets N a clause C is syntactically semi-relevant in the clause set N if and only if it adds to the number of conflict literals in N . A clause set is independent, if no clause out of the clause set is the consequence of different clauses from the clause set. Furthermore, we relate the notion of relevance to that of a minimally unsatisfiable subset (MUS) of some independent clause set N . In propositional logic, a clause C is relevant if it occurs in all MUSes of some clause set N and semi-relevant if it occurs in some MUS. For first-order logic the characterization needs to be refined with respect to ground instances of N and C

    Generalized Completeness for {SOS} Resolution and its Application to a New Notion of Relevance

    Get PDF
    International audienceWe prove the SOS strategy for first-order resolution to be refutationally complete on a clause set NN and set-of-support SS if and only if there exists a clause in SS that occurs in a resolution refutation from N∪SN\cup S. This strictly generalizes and sharpens the original completeness result requiring NN to be satisfiable. The generalized SOS completeness result supports automated reasoning on a new notion of relevance aiming at capturing the support of a clause in the refutation of a clause set. A clause CC is relevant for refuting a clause set NN if CC occurs in every refutation of NN. The clause CC is semi-relevant if it occurs in some refutation, i.e., if there exists an SOS refutation with set-of-support S={C}S = \{C\} from N∖{C}N\setminus \{C\}. A clause that does not occur in any refutation from NN is irrelevant, i.e., it is not semi-relevant. Our new notion of relevance separates clauses in a proof that are ultimately needed from clauses that may be replaced by different clauses. In this way it provides insights towards proof explanation in refutations beyond existing notions such as that of an unsatisfiable core

    Abduction in {EL} via Translation to {FOL}

    Get PDF
    International audienceWe present a technique for performing TBox abduction in the description logic EL. The input problem is converted into first-order formulas on which a prime implicate generation technique is applied, then EL hypotheses are reconstructed by combining the generated positive and negative implicates

    Connection-Minimal Abduction in EL\mathcal{EL} via Translation to {FOL}

    Get PDF
    International audienceAbduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL , where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam’s razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain

    Connection-minimal Abduction in EL via Translation to FOL -- Technical Report

    Get PDF
    Abduction in description logics finds extensions of a knowledge base to makeit entail an observation. As such, it can be used to explain why theobservation does not follow, to repair incomplete knowledge bases, and toprovide possible explanations for unexpected observations. We consider TBoxabduction in the lightweight description logic EL, where the observation is aconcept inclusion and the background knowledge is a TBox, i.e., a set ofconcept inclusions. To avoid useless answers, such problems usually come withfurther restrictions on the solution space and/or minimality criteria that helpsort the chaff from the grain. We argue that existing minimality notions areinsufficient, and introduce connection minimality. This criterion followsOccam's razor by rejecting hypotheses that use concept inclusions unrelated tothe problem at hand. We show how to compute a special class ofconnection-minimal hypotheses in a sound and complete way. Our technique isbased on a translation to first-order logic, and constructs hypotheses based onprime implicates. We evaluate a prototype implementation of our approach onontologies from the medical domain.<br

    Connection-Minimal Abduction in {E}L via Translation to {FOL} (Extended Abstract)

    Get PDF
    International audienceAbduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL , where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam’s razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain

    On a Notion of Relevance

    Get PDF
    International audienc
    corecore